
Ephemeral Data Handling in Microservices
Fabrizio Montesi1, Larisa Safina1,2, and Stefano Pio Zingaro3

1University of Southern Denmark, 2Innopolis University, 3Università di Bologna/INRIA

Introduction. Modern application areas for software systems, like eHealth, the Internet
of Things, and Edge Computing, need to address two requirements: velocity and
variety [1]. Velocity concerns managing high throughput and real-time processing
of data. Variety means that data might be represented in heterogeneous formats,
complicating their aggregation, query, and storage. Recently, in addition to velocity
and variety, it has become increasingly important to consider ephemerality (of data
handling) [2], where data must be processed in real-time but not persist. The rise
of ephemeral data is due to scenarios with heavy resource constraints (e.g., storage,
battery), as in the Internet of Things and Edge Computing, or new regulations that
may limit what data can be persisted, like the GDPR, as in eHealth.

Programming data handling correctly can be time consuming and error-prone with
a general-purpose language. Thus, often developers use a query language, paired with
an engine to execute them [3]. When choosing the query execution engine, developers
can either A) use a database management system (DBMS) executed outside of the
application, or B) include a library that executes queries using the application memory.

Problem statement. Approach A) is the most common. Since the early days of
the Web, programmers integrated application languages with relational (SQL-based)
DBMSs for data persistence and manipulation. This pattern continues nowadays, where
relational databases share the scene with new NoSQL DBMSs, like MongoDB [4] and
Apache CouchDB [5], which are document-oriented. Document-oriented databases
natively support tree-like nested data structures (typically in the JSON format). Since
data in modern applications is typically structured as trees (e.g., JSON, XML), this
removes the need for error-prone encoding/decoding procedures with table-based struc-
tures, as in relational databases. However, when considering ephemeral data handling,
the issues of approach A) overcome its benefits even if we consider NoSQL DBMSs:
Drivers and Maintenance. An external DBMS is an additional standalone component
that needs to be installed, deployed, and maintained. To interact with the DBMS,
the developer needs to import in the application specific drivers (libraries, RESTful
outlets). As with any software dependency, this exposes the applications to issues of
version incompatibility.
Security Issues. The companion DBMS is subject to weak security configurations and
query injections, increasing the attack surface of the application.
Lack of Tool Support. Queries to the external DBMS are typically black-box entities
(e.g., encoded as plain strings), making them opaque to analysis tools available for the
application language (e.g., type checkers).
Decreased Velocity and Unnecessary Persistence. Integration bottlenecks and overheads
degrade the velocity of the system. Bottlenecks derive from resource constraints and
slow application-DB interactions; e.g., typical database connection pools represent a
potential bottleneck in the context of high data-throughput. Also, data must be inserted
in the database and eventually deleted to ensure ephemeral data handling. Overheads
also come in the form of data format conversions.
Burden of Variety. The DBMS typically requires a specific data format for communica-
tion, forcing the programmer to develop ad-hoc data transformations to encode/decode

Ephemeral Data Handling in Microservices Montesi, Safina and Zingaro

data in transit (to insert incoming data and returning/forwarding the result of queries).
Implementing these procedures is cumbersome and error-prone.

On the other side, approach B) is less well explored. However, it holds potential for
ephemeral data handling. Approach B) avoids by design the first two issues of approach
A) . The issue on tools is sensibly reduced, since both queries and data can be made
part of the application language. The issue on velocity is also tackled by design. There
are less resource-dependent bottlenecks and no overhead due to data insertions (there
is no DB to populate) or deletions (the data disappears from the system when the
process handling it terminates). Data transformation between different formats is still
an issue here since, due to variety, the developer must convert incoming/outgoing data
into/from the data format supported by the query engine. Examples of implementations
of approach B) are LINQ [3] and CQEngine [6]. While LINQ and CQEngine grant
good performance (velocity), variety is still an issue. Those proposals either assume
an SQL-like query language or rely on a table-like format, which entail continuous,
error-prone conversions between their underlying data model and the heterogeneous
formats of the incoming/outgoing data.

Contribution. Inspired by approach B, we implemented a framework in the Jolie
programming language [7] for ephemeral data handling in microservices; the building
blocks of software for our application areas of interest. Our framework includes a query
language and an execution engine, that we formalised instantiating a sound version of
the MongoDB query language [8].

In our presentation we will illustrate the features of our framework through a non-
trivial eHealth use case, which describes the handling of the data and the workflow of the
diagnostic algorithm taken from [9], where the authors delineate a diagnostic algorithm
to detect cases of encephalopathy. The handling follows the principle of “data never
leave the hospital” in compliance with the GDPR [10]. While the algorithm described
in [9] considers a plethora of clinical tests to signal the presence of the neurological
condition, we focus on two early markers for encephalopathy: fever in the last 72 hours
and lethargy in the last 48 hours. That data is collectible by commercially-available
smart-watches and smart-phones [11]: body temperature and sleep quality. We report
in Listing 1, in a JSON-like format, code snippets exemplifying the two kinds of data
structures. At lines 1–2, we have a snippet of the biometric data collected from the
smart-watch of the patient. At lines 4–6 we show a snippet of the sleep logs [12]. Both
structures are arrays, marked [], containing tree-like elements, marked { }. At lines
1–2, for each date we have an array of detected temperatures (t) and heart-rates (hr).
At lines 4–6, to each year (y) corresponds an array of monthly (M) measures, to a month
(m), an array of daily (D) logs, and to a day (d), an array of logs (L), each representing a
sleep session with its start (s), end (e) and quality (q).

Listing 1: Snippets of biometric (line 1) and sleep logs (lines 3–5) data.

1 [{date:20181129,t:[37,...],hr:[64,...]},
2 {date:20181130,t:[36,...],hr:[66,...]},...]
3
4 [{y:2018,M:[...,{m:11,D:[{d:29,L:[{s:"21:01",e:"22:12",q:"good"},
5 {s:"22:36",e:"22:58",q:"good"},...]},{d:30,L:[
6 {s:"20:33",e:"22:12",q:"poor"},...]},...]},...]},...]

On the data structures above, we define a Jolie microservice, reported in Listing 2,
which describes the handling of the data and the workflow of the diagnostic algorithm,

2

Ephemeral Data Handling in Microservices Montesi, Safina and Zingaro

using our implementation of TQuery. The example is detailed enough to let us illustrate
all the operators in TQuery: match, unwind, project, group, and lookup. Note that,
while in Listing 2 we hard-code some data (e.g., integers representing dates like 20181128)
for presentation purposes, we would normally use parametrised variables.

In Listing 2, line 1 defines a request to an external service, provided by the HospitalIT
infrastructure. The service offers functionality getPatientPseudoID which, given some
identifying patientData (acquired earlier), provides a pseudo-anonymised identifier —
needed to treat sensitive health data — saved in variable pseudoID.

At lines 2–6 (and later at lines 9–17) we use the chaining operator |> to define a
sequence of calls, either to external services, marked by the @ operator, or to the internal
TQuery library. The |> operator takes the result of the execution of the expression at
its left and passes it as the input of the expression on the right.

At lines 2–6 we use TQuery operators match and project to extract the recorded
temperatures of the patient in the last 3 days/72 hours.

At line 2 we evaluate the content of variable credentials, which holds the certificates
to let the Hospital IT services access the physiological sensors of a given patient. In
the program, credentials is passed by the chaining operator at line 3 as the input of
the external call to functionality getMotionAndTemperature. That service call returns
the biometric data (Listing 1, lines 1–2) from the SmartWatch of the patient. While
the default syntax of service call in Jolie is the one with the double pair of parenthesis
(e.g., at line 1 Listing 2), thanks to the chaining operator |> we can omit to specify
the input of getMotionAndTemperature (passed by the |> at line 3) and its output (the
biometric data exemplified at Listing 1) passed to the |> at line 4. At line 4 we use
the TQuery operator match to filter all the entries of the biometric data, keeping only
those collected in the last 72 hours/3 days (i.e., since 20181130). The result of the
match is then passed to the project operator at line 5, which removes all nodes but
the temperatures, found under t and renamed in temperatures (this is required by the
interface of functionality detectFever, explained below). The projection also includes
in its result the pseudoID of the patient, in node patient_id. We finally store (line 6)
the prepared data in variable temps (since it will be used both at line 7 and 16).

At line 7, we call the external functionality detectFever to analyse the temperatures
and check if the patient manifested any fever, storing the result in variable hasFever.

Listing 2: Encephalopathy Diagnostic Algorithm.

1 getPatientPseudoID@HospitalIT(patientData)(pseudoID);
2 credentials
3 |> getMotionAndTemperature@SmartWatch
4 |> match {date == 20181128 || date == 20181129 || date == 20181130 }
5 |> project {t in temperatures, pseudoID in patient_id }
6 |> temps;
7 detectFever@HospitalIT(temps)(hasFever);
8 if(hasFever){
9 credentials

10 |> getSleepPatterns@SmartPhone
11 |> unwind { M.D.L }
12 |> project{y in year,M.m in month,M.D.d in day,M.D.L.q in quality}
13 |> match {year == 2018 && month == 11 && (day == 29 || day == 30) }
14 |> group { quality by day, month, year }
15 |> project {quality, pseudoID in patient_id }
16 |> lookup { patient_id == temps.patient_id in temps }
17 |> detectEncephalopathy@HospitalIT }

3

Ephemeral Data Handling in Microservices Montesi, Safina and Zingaro

After the analysis on the temperatures, if the patient hasFever (line 8), we continue
testing for lethargy. To do that, at lines 9–10, we follow the same strategy described for
lines 2–3 to pass the credentials to functionality getSleepPatterns, used to collect
the sleep logs of the patient from her SmartPhone. Since the sleep logs are nested under
years, months, and days, to filter the logs relative to the last 48 hours/2 days, we first
flatten the structure through the unwind operator applied on nodes M.D.L (line 11). For
each nested node, separated by the dot (.), the unwind generates a new data structure
for each element in the array reached by that node. Concretely, the array returned by
the unwind operator at line 11 contains all the sleep logs in the shape:

[{year:2018,M:[{m:11,D:[{d:29,L:[{s:"21:01",e:"22:12",q:"good"}]}]}]},

{year:2018,M:[{m:11,D:[{d:29,L:[{s:"22:36",e:"22:58",q:"good"}]}]}]}]

where there are as many elements as there are sleep logs and the arrays under M, D,
and L contain only one sleep log. Once flattened, at line 12 we modify the data-structure
with the project operator to simplify the subsequent chained commands: we rename
the node y in year, we move and rename the node M.m in month (bringing it at the same
nesting level of year); similarly, we move M.D.d, renaming it day, and we move M.D.L.q
(the log the quality of the sleep), renaming it quality — M.D.L.s and M.D.L.e, not
included in the project, are discarded. On the obtained structure, we filter the sleep
logs relative to the last 48 hours with the match operator at line 13. At line 14 we use
the group operator to aggregate the quality of the sleep sessions recorded in the same
day (i.e., grouping them by day, month, and year). Finally, at line 15 we select, through
a projection, only the aggregated values of quality (getting rid of day, month, and
year) and we include under node patient_id the pseudoID of the patient. That value
is used at line 16 to join, with the lookup operator, the obtained sleep logs with the
previous values of temperatures (temps). The resulting, merged data-structure is finally
passed to the HospitalIT services by calling the functionality detectEncephalopathy.

References
[1] D. P. Mehta and S. Sahni, Handbook of data structures and applications. Chapman and

Hall/CRC, 2004.
[2] E. Shein, “Ephemeral data,” Communications of the ACM, vol. 56, no. 9, pp. 20–22, 2013.
[3] J. Cheney, S. Lindley, and P. Wadler, “A practical theory of language-integrated query,” ACM

SIGPLAN Notices, vol. 48, no. 9, pp. 403–416, 2013.
[4] MongoDB Inc., “MongoDB Website.” https://www.mongodb.com/, 2018.
[5] Apache Software Foundation, “CouchDB Website.” https://couchdb.apache.org/, 2018.
[6] Niall Gallagher, “CQEngine - Collection Query Engine.” https://github.com/npgall/

cqengine, 2018.
[7] F. Montesi, C. Guidi, and G. Zavattaro, “Service-oriented programming with jolie,” in Web

Services Foundations (A. Bouguettaya, Q. Z. Sheng, and F. Daniel, eds.), pp. 81–107, Springer,
2014.

[8] E. Botoeva, D. Calvanese, B. Cogrel, and G. Xiao, “Expressivity and complexity of mongodb
queries,” in LIPIcs-Leibniz International Proceedings in Informatics, vol. 98, Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2018.

[9] F. Vigevano and P. D. Liso, “Chapter 11 - differential diagnosis,” in Acute Encephalopathy
and Encephalitis in Infancy and Its Related Disorders (H. Yamanouchi, S. L. Moshé, and
A. Okumura, eds.), pp. 81 – 85, Elsevier, 2018.

4

https://www.mongodb.com/
https://couchdb.apache.org/
https://github.com/npgall/cqengine
https://github.com/npgall/cqengine

Ephemeral Data Handling in Microservices Montesi, Safina and Zingaro

[10] N. Rose, “The human brain project: Social and ethical challenges,” Neuron, vol. 82, no. 6,
pp. 1212 – 1215, 2014.

[11] J. A. Bunn, J. W. Navalta, C. J. Fountaine, and J. D. REECE, “Current state of commercial
wearable technology in physical activity monitoring 2015–2017,” International journal of
exercise science, vol. 11, no. 7, p. 503, 2018.

[12] S. M. Thurman, N. Wasylyshyn, H. Roy, G. Lieberman, J. O. Garcia, A. Asturias, G. N.
Okafor, J. C. Elliott, B. Giesbrecht, S. T. Grafton, S. C. Mednick, and J. M. Vettel, “Individual
differences in compliance and agreement for sleep logs and wrist actigraphy: A longitudinal
study of naturalistic sleep in healthy adults,” PLOS ONE, vol. 13, pp. 1–23, 01 2018.

5

